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Superluminal X-shaped beams propagating without distortion along a coaxial guide
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In a previous paper we showed that localized superluminal solutions to the Maxwell equations exist, which
propagate dowr{nonevanescengaegions of a metallic cylindrical waveguide. In this paper we construct
analogous nondispersive waves propagating along coaxial cables. Such new solutions, in general, consist in
trains of(undistorted superluminal “X-shaped” pulses. Particular attention is paid to the constructifinite
total energy solutions. Any results of this kind may find application in the other fields in which an essential role
is played by a wave equatidiike acoustics, geophysics, etc.
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[. INTRODUCTION (i.e., travel with a speed larger than the sound speed in the
mediun) in the acoustic case. The first authors to produce
In a previous papdrl] we constructed localized superlu- experimentallyX-shaped waves were Lu and Greenlgkd]
minal solutions to the Maxwell equations propagating alongfor acoustics, Saari and Reiv¢lt4] for optics, and Mugnai
(nonevanescent regions)af metallic cylindrical waveguide. €t al. [15] for microwaves. Let us also emphasize, inciden-
In the present paper we are going to show that ana|ogod§”y, that all such solutions can have an interesting role even
solutions exist even for metallimaxialcables. Their interest N seismology, and probably in the gravitational wave sector.
is due to the fact that they propagate without distortion with ~Notwithstanding all that worK16], it is not well under-
superluminal group velocity. stood yet what solutions—let us now confine ourselves, for
Let us recall that already in 1915 Batemf#] showed simplicity, to Maxwell equations and to electromagnetic
Maxwell equations to admitbesides of the ordinary solu- waves only—have to enter into the play in realistic experi-
tions, endowed with speetlin vacuum of wavelettype so- ments using waveguides, optical fibers, etc.
lutions, endowed in vacuum with group velocities<
<c. But Bateman’s work went practically unnoticed, with
the exception of a few authors as Baaital. [3]. (Inciden- Il. THE CASE OF A CYLINDRICAL WAVEGUIDE
tally, Barutet al. even constructed a wavelettype solutidi

traveling W'th_ superluminal group velocity>c.) . the TM (transverse magnejicase, localized solutions to the
In recent times, however, many authors started to disCUSg,,ve|| equations which propagatendistorted with Su-

th.e circumstance that all wave equations admit of SOIUt'On?)erIuminaI speed along a cylindrical waveguide. Let us take

W|th_0svsoo: See, €9, Ref_[5]. Most .Of those author_s advantage of the present opportunity for calling further at-

confined themselves to investigdfibluminal or superlumi- tention to two points, which received just a mention in Ref.

nal) nondispersive solutions propagating in the open spacm' with regard to Ed(g) and Fig. 2 therein. Namely, let us

only, namely, those solutions that had been called “u”dishere stress thatti) Those solutions consist in fain of

torted progress_ive Waves” by Courant and HiIbEﬁ}. ulses like the one depicted in Fig. 2 of Reff]; and thatii)
Among localized solutions, the most interesting appeare ach of such pulses is ¥haped

to be the “Xshaped waveSwhich, predicted long ago t0 A more complete representation of the Tidnd trans-

exist within special r_elativity in its extended versipn,g|, verse electric, TE nondispersive waves, traveling down a
had been mathematically constructed by Lu and Greenleac,fylindrical waveguide, will be forwarded elsewhere.
[9] for acoustic waves, and by Ziolkowsét al.[10] and by

Recamiet al. [11] for electromagnetic waves.
Let us stress that such “)_(-shaped" localized solutlons are Ill. THE CASE OF A COAXIAL CABLE
superluminal (i.e., travel with a speed larger tham in
vacuum in the electromagnetic case; and are “supersonic” Let us now examine the case of a coaxial cablenetallic
coaxial waveguide, to fix our idepsthat is, of the region
delimited by two cylinders with radiup=r,; and p=r5,
*Email address: giz.r@uol.com.br respectively, and axially symmetric with respect to treis:
"Email address: recami@mi.infn.it see Fig. 1. We shall consider in this article both the TM case,

As we already mentioned, in RdfL] we constructed, for
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or the (Neumann boundary conditions
J =at)= J =b;t)=0 2
gtﬂ(p—a. )—%wm— ;1)=0. 2)

Let us notice right now that transformatiof®, with con-
dition (1’) or (2'), lead to a(three-dimensionalsolution
rigidly traveling with superluminal speed=c/cosé inside a
coaxial cable with internal and external radius equad
longer toa, b, but) to ry=a/sing>a andr,=b/sing>b,

FIG. 1. Sketch of the coaxial waveguide. respectively. The same procedure can be applied also in other
cases, provided that the boundary conditions depenxl,pn
characterized by the Dirichlet boundary conditigag] (for  only, as in the case, e.g., of a cable with many cylindrical

any time instant) (empty tunnels inside it.
E.(p=r1;t)=0, Ejp=r,;t)=0, @ IV. THE TRANSVERSE MAGNETIC (TM) CASE
and the TE(transverse electriccase, characterized by the  Let us go back to the two-dimensional equati@ with
Neumann boundary conditiof47] (for anyt), the boundary conditions (). Let us choose, for instance,
) ) the simpleinitial conditions ¢(p;t=0)=¢(p) and Jyldt
5, HAP=T1i0=0, oMy (p=rpn=0. (@ T¢(p)at=0, where
d(p)=3(p—po), f(P)|t:0:0, (6)

To such aims, we shall first generalize a theorem due to
Lu et al.[18] (stated and demonstrated below, in the AppenWith
dix), which showed how to start from a solution holdiimg
the plane(x,y) for constructing a three-dimensional solution

rigidly moving along thez axis with superluminal speed. Following a method similar to that in RefL], and using

The theorem of Let al. was valid for the vacuum. In Ref. he houndary conditions (}, in cylindrical coordinates and

[1], we set forth its generalization for a cylindrical wave- for axial symmetry one gets solutions to E8) of the type
guide, while here we are going to extend it, as we said abov%zERn(p)Tn(t) in the following form:

for a coaxial cable. Let us first recall what the theorem of Lu

et al.is about. If we assume thdt(p;t), with p=(x,y), is a -
solution of the two-dimensional homogeneous wave equa- 2¢(p;t)= 21 Rn(p)[An COSw,t—B,sinwpt],  (7)
tion n=
1 where the function&(p) are
(92+32——a2) 1)=0, 3
A @ ® Ro(p)=No(knd) Jo(knp) —Jo(knd) No(kep),  (8)

then, by applying the transformations quantitiesNy and J, being the zeroth-order Neumann and
Bessel functions, respectively; and where the characteristic
angular frequenciegl9] can be evaluated numerically, they

' ) being solutions to the equatidm,= ck,],

i cos#
p—psing, and t—>t—zT

the angled being fixed, with 6< 6< /2, one get$18] that Jo(knd) _ Jo(knb)
Y(psing;t—zcosdlic) is now a solution of thethree- No(kha)  No(k,b)*
dimensionahomogeneous wave equation

C)

The initial conditions (6) imply that 2A,R,(p)=4d(p

, 1, ] cosd —po), and=B,R,(p)=0, so that all the coefficienB, van-
V- 2dt| ¢ psindit—z——|=0, (5 ish, and eventually one obtains the two-dimensional solution
where nowV?=g2+ a2+ a2, p=(x.y). o
y ' %z ' v = AR COSwt, 10
The mentioned theorem holds for the free case, so that, in 20(pit) nzl nRnlp) COS@y (10

general, it does not hold when introducing boundary condi-
tions. We shall see, however, that it can be extended even #ith

the case of a two-dimensional solutignvalid on an annular B 9 9
domain, asp=<b, p=|p|, with either the (Dirichlet) 2An={~a’[No(kna)Ja(kna) = Jo(kna)N1(kna)]

boundary conditions +b2[No(kna)J1(Knb) — Jo(kna) N1 (kqb) 12 2
Y(p=a;t)=y(p=Db;t)=0, (1) X Rn(po)- (11
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FIG. 2. Square magnitudd¥,5(p;t=0)|?> of the two-
dimensional solutions in Eq10) for fixed time ¢=0) and forN
=10 (dotted ling or N=40 (solid line). It refers to the TM case
(Dirichlet boundary conditionswith a=1 cm, b=3 cm, andp,
=2 cm: see the text.
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value pg/sin 6 of p. However, solution(12) does automati-
cally satisfy on the cylinders with radiug andr, the con-
ditions[V3p=E,],

WVip(p=alsinb,z;t)=V3p(p=b/sinh,z;t)=0.

Till now, ¥5p has represented the electric field compo-
nentE,. Let us add that in the TM cage0]

o

One can notice that the present procedure is mathemati"d
cally analogous to the analysis of the free vibrations of a v

ring-shaped elastic membrafE9].

For any practical purpose, one has of course to take a

finite numberN of terms in expansiorf10). In Fig. 2 we
show, e.g., the two-dimensional functioni,p(p;t)|? of Eq.
(10) for fixed time (=0) and forN= 10 (dotted ling or N
=40 (solid line). Notice that, when the valud is finite, the
first one of the condition$6) is no longer as function, but

represents a physical wave, which nevertheless is still clearl
bumped(Fig. 2. It is rather interesting that, for each value of
N, one meets a differen(physica) situation; at the extent

that we obtain infinite manydifferent families of three-
dimensional solutions, by varying the truncating valien
Eqg. (12) below.

Actually, by the transformation&4) we arrive from Eq.

(10) at the three-dimensional superluminal nondispersive so-
lution V55, propagating without distortion along a metallic

coaxial waveguide, i.e., down a coaxial caplé>c],

Wap(piz— Vi) = nzl AR, (p sind) cogk,(z—Vt)cosd],
(12

. cVv 1
Ei:'\/ZTcznzlk_nVi\P?’D’ (1239
where
cV _cose Ko/
VI—c2~ siPge T “n'S
H =eoz ZXE, . (12b)

As we mentioned above, for any truncating valNen
expansion(10), we get adifferent physical situation: In a
sense, we excite in differentway the two-dimensional an-
nular membrane, obtainingyia the theorem of Ludifferent
three-dimensional solutions, which correspdbfto nothing
But summation12) truncated at the valul.

In Figs. 3a), 3(b), we show a singlgX-shaped three-
dimensional pulsél ;5 with §=84°, andN=10 or N=40,
respectively.

In Fig. 4, by contrast, we depict a couple of elements of
the train of X-shaped pulses represented by Etp), for 6
=45 andN=40.

In Fig. 5 the orthogonal projection is moreover shown of
a single pulséof the solution in Fig. #onto the p,z) plane
for t=0, with §=45° and N=40. Quantitiesp and » are
always in centimeters.

V. THE TRANSVERSE ELECTRIC (TE) CASE

In the TE case, one has to consider the two-dimensional
equation(3) with the boundary conditions (2, while the

which is a sum over different propagating modes. The facinitial conditions(6) can remain the same.

that V=c/cos6>c means (once mor¢ that the group

As in Sec. IV, one gets—still for axial symmetry in cylin-

velocity! of our pulses is superluminal. For simplicity, in our drical coordinates—the following solution to E(B):

figures we shall put—Vt= 7.

Let us notice that transformatiorig), which change—as

we already know-a into r;=a/sind and b into r,
=b/sing, are such that the maximum df 5y is got for the

[’

2‘/’(P;t):n§=‘41 Rn(p)[Ancoswpt—B,sinwpt],  (13)

where now the functionR,(p) are

Rn(p)=N1(knha)Jo(knp) = J1(kna)No(knp),  (13)

he . .
geflned in terms of different values &f,. In fact, the char-
acteristic(angulay frequencies are now to be obtained by the

!Let us recall that the group-velocity is well defined only when the
pulse has a clear bump in space; but it can be calculated by t
approximate relatiom y=dw/dg, quantity 3 being the wave num-
ber,only when some extra conditions are satisfindmely, wheno )
as a function ofg is also clearly bumped in the present case the NeW relation

group velocity is very well defined, but cannot be evaluated through
Ji(ked)  Jy(Kyb)

that simple relation, since is a discrete function oB; cf. Eq. (9)
and Sec. VI, Eq(22), below.

Na(kna) ~ No(kob) 4
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FIG. 4. In this figure we depict, by contrast,cauple of ele-

Eq. (12), for N=40. This time the anglé=45° was chosen, keep-
ing the same andb values as before.

velocity V=c/cos#>c. The present solutiorfl6) satisfies

Wap o
the boundary conditions

J J
—Wap(p,z;t) =—W3p(p,z;t) =0,
ap p=alsing J p=Dbl/siné

where nowW ;p=H,. The transverse components, in the TE

b
® case, are givefi20] by

FIG. 3. In Figs.(a) and (b) we show the square magnitude

|¥3p(p,7)|? of a single(X-shaped three-dimensional pulse of the o~ eV o1 . .
beam in Eq(12), with §=84° r,=alsin#, r,=b/siné (it having H, “vZ-¢2 nzl k—nS|r[kn(z—Vt)cose]VL Ra(psing),
been chosem=1 cm andb=3 cm), for N=10 andN=40, re- (179

spectively. They refer to the TM case. Notice thgEz—Vt, and
that the considered beam is a train of X-shaped pulses. In all ths.nd
figures of this paper, quantitigsand » are in centimeters.

Again, the initial conditions(6) entail that>A,R,(p)
=8(p—po), and=B,R,(p)=0, so that all the coefficients
B, vanish, and one gets the two-dimensional solution

0

wzo<p;t>=gl ARq(p) coswt, (15)

where the coefficientd\,, are given by
2A,={—a’[Ny(kqa)Jo(kna) — J1(kna)No(kqa)]?
+ B[Ny (Kna) Jo(Kab) — J1(kna)No(kyb) 17}
XRn(po)- (15)

In this case one obtains, by transformatiofs the super-
luminal nondispersive three-dimensional solution

0

Wap(p;z— Vi) = E AR, (p sin6) cogk,(z— Vt)cosd], FIG. 5. The orthogonal projection is shown of a single puéfe
n=1 the solution in Fig. 4, referring to the TM casento the p,z) plane

(16) for t=0, with #=45° andN=40.

046617-4
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FIG. 6. In analogy with Fig. 2, the square magnitude
|¥,p(p;t=0)|? is shown of the two-dimensional solutions in Eq.
(15 for fixed time (=0), and for a=1 cm, b=3 cm, pq
=2 cm; this time it refers, however, to the TE ca@éeumann
boundary conditions see the text. Again, the dotted line corre-

. . -2 -1 ] 1 2 3 4 5 6
sponds taN =10, and the solid line tt\=40. n
V . o o
E,=—uo— zXH,. (17b FIG. 8. The orthogonal projection is shown of the solution in
c Fig. 7, for the TE case, onto the plang,£) for t=0, with 6
=60° andN=40.

In Fig. 6 we plot our functior®,5 with N=10 (dotted
line) or N=40 (solid line). In Fig. 7 there are depicted, by domain of TM modes. When a solution in terms of the lon-
contrast, two elements of the train of X-shaped pulses repreitydinal electric componeri, is sought, one has to deal
sented by Eq(16), with 6=60°, for N=40 only. In Fig. 8, at  ith the boundary conditio&,=0; we shall look, moreover,
last, we show the orthogonal projection of the solution infor axially symmetric solutionsi.e., independent of the azi-
Fig. 7 onto the planez) for t=0, with 6=60° andN  myth variabley): Such choices could be easily generalized,

=40. Quantitiesp and » are in cm. just at the cost of increasing the mathematical complexity.
Quantity E, is then completely equivalent to the scalar vari-
VI. REDERIVATION OF OUR RESULTS FROM THE ablew =W, used in the previous analysis.
STANDARD THEORY OF WAVEGUIDE PROPAGATION Let us look for solutions of the forril]

Lu's theorem is certainly a very useful tool to build up
localized solutions to Maxwell equations: nevertheless, due Ez(;o,Z;t)=KR(/O)E!XI{i
to the novelty of our previous results, it may be worthwhile
to outline an alternative derivatiofl] of them which can
sound more familiar. To such an aim, we shall follow the
procedure introduced in Refl].

For the sake of simplicity, let us limit ourselves to the

. (19

wZ cosh )
—wt

whereR(p) is assumed to be a function of the radial coor-
dinate p only, andK is a normalization constant. Here we
call ¢ the velocity of light in the medium filling the coaxial
waveguide, supposing it nondispersive. Ttamgulaj fre-

. quencyw is for the moment arbitrary.

2, By inserting expressioril8) into the Maxwell equation
lw3pl . for E,, one obtaing1]
o4 , d®R(p)  dR(p) wsing
2 202 — -
! p 0?2 +p . +p°Q°R(p)=0, Q -

whose only solution, which is finite on the waveguide axis,
is R(p)=Ng(wal/c)Ig(wp sin b/c)—Jo(walc)Ng(wp Sin /c),
which is analogous to Ed8).

By imposing the boundary conditionR(p)=0 for p
=r, andp=r, , one gets the acceptable frequencies from
the characteristic equation,

° Jo(wnalc) B Jo(wpb/c)
No(wpa/c) No(wgb/c)’

(19

FIG. 7. In this figure, which refers to the TE case, two elements
are depicted of the train of X-shaped pulses represented bilg)y. SO that one has a different functidty(p) for each value of
with §=60° andN=40, while keeping the sameeandb values as  ®,. Therefore, assuminfll] an arbitrary parametef, we
before. find that, for every mode supported by the waveguide and

046617-5
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labeled by the index, there is just one frequency at which 10
the assumed dependends) on z andt is physically realiz-

able. Let us show such a solution to be the standard on¢e
known from classical electrodynamics. In fact, by inserting 8r
[1] the allowed frequencies,, into the complete expression

of the mode, we have

. (20

wnZ CosH
— —wpt

EJ(p,Z;t)=KR,(p) ex;{i

But the generic solution fofaxially symmetri¢ TMg,
modes [21] in a coaxial metallic waveguide i§€Q,
=w, sindlc],

E;""=KRy(p) exi(B(og)z—wp)],  (21)
the wave numbep being a discrete function ab, with the
“dispersion relations”

wZ

Bon) = —0r.

By identifying B(w,)= w, cosélc, as suggested by EQO),
and remembering the expression foy given by Eq.(19),
the ordinary dispersion relation is gdt]. We have therefore
verified that every term in the expansi@i®) is a solution to
Maxwell equations not different from the usual one.

The uncommon feature of our solutiéh?) is that, given
a particular value of), the phase velocity dodll its terms is

always the same, it being independent of the mode inglex

~ cosé’

B(wp)

Wn

Vph:

Normalized wave-vector

Normalized Frequency

FIG. 9. Dispersion curves for the symmetrical Mnodes in a
perfect coaxial waveguide, and location of the frequencies whose
corresponding modes possess the same phase velduityally,
the phase velocityc/cosé of all the terms in expansiofl2) is
always the same, being independent of the mode imdéx such a
case, it is known that the group velocity of the pulsamely, the
velocity tout court of the localized pulsebecomes equal to the
phase velocity.

Let us finally remarK 1] that similar considerations could
be extended to all the situations where a waveguide supports
several modes. Tests at microwave frequencies should be
rather easy to perform; by contrast, experiments in the opti-
cal domain would face the problem of the limited extension
of the spectral windows corresponding to not too large at-

In such a case it is well known that the group velocity of theténuation, even if some work23] is in progress in many
pulseequalsthe phase velocity22]: and in our case is the directions.

velocity tout courtof the localized pulse.
With reference to Fig. 9, we can easily 4d4¢ that all the

Moreover, results of the kind presented in this paper, as
well as in Refs[1,11,14, may find application in the other

allowed values ofw, can be calculated by determining the fi€lds in which an essential role is played by a wave equation
intersections of the various branches of the dispersion reldlike acoustics, seismology, geophysics, and relativistic

tion with a straight line, whose slope dependséoanly. By

quantum mechanics, possihly

using suitable combinations of terms, corresponding to dif-
ferent indicesn, as in our Eq(12), it is possible to describe \;, Low To GET FINITE TOTAL ENERGY SOLUTIONS

a disturbance having a time-varying prof{lg], as already

shown in Figs. 3—4 above. Each pulse thus displaces itself We shall go on following the standard formalism of Sec.

rigidly, with a velocityv=uv4 equal toVy,.

It should be repeated that the velocity (or group-
velocity v4=v) of the pulses corresponding to H§) is not
to be evaluated by the ordinary formug=dw/dg (valid

VI; what we are going to do holds, however, for both the TM
and the TE case. Let us anticipate that, in order to get finite
total energy solution$FTES), we shall have to replace each
characteristic frequenay,, [cf. Eq.(9), or Eg.(14), or rather

for quasimonochromatic signalg his is at variance with the Fig. 9] by a small frequency band\w centered aw,, al-
common situation in optical and microwave communica-ways choosing the sam&w independently ofn. In fact,
tions, when the signal is usually an “envelope” superim- since all the modes entering the Fourier-type expan&iay
posed to a carrier wave whose frequency is generally muchr (16), possess the same phase velodiy=V=c/cosd,
higher than the signal bandwidth. that case the standard each small bandwidth packet associated withwill possess

formula forv 4 yields the correct velocity to deal witfe.g.,

the same group velocity,= c2/vph, so that we shall have as

when propagation delays are studie@ur case, on the con- a result a wave whosenveloperavels with thesubluminal
trary, is much more reminiscent of a baseband modulatedroup velocityv . However inside the subluminal envelope,
signal, as those studied in ultrasonics: the very concept of ane or morepulseswill be traveling with the dualsuperlu-
carrier becomes meaningless here, as the discrete “haminal) speed V=CZ/vg. Such well-localized peaks have

monic” components have widely different frequencjés.

nothing to do with the ordinarysinusoidal carrier wave,

046617-6
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and will be regarded as constitutirtige relevantwave. Be-  where By,= w,c0s6, and the further terms are neglected
fore going on, let us mention that previous work related tosince Aw is assumed to be small. Notice that, because of
FTESs can be found—as far as we know—only in Refsrelations (25 and (23), in Eq. (27) the group velocities,
[24,17. given by

Formally, to get FTESs, let us consider the ordinary

(three-dimensionalsolutions for a coaxial cable: 1_ %

v_ )
¥n(p,Z;t) =KpRy(p) cod B(w)z— wt], (22) & “n
where coefficient& , coincidewith the A, given by Eq.(11)  are actually independent of all of them possessing there-
or Eq.(15) in the TM or TE cases, respectively; and func- fore the same value:

tionsR, are again given by Ed8) or Eq.(13'), respectively;
since the valueg,,

Ugn=0g4= C COSH. (27)

By using relation(27) and the transformation of variables

N

k=5 — B2 (29

@ fr=0w—ow,,

are equal to those found via tievo dimensionalEq.(9) in  the integration in Eq(26) does eventually yield

the TM and via Eq(14) in the TE case, simplynultiplied by

sin @ [because of the fact that, when going on from the two-

dimensional membrane to the three-dimensional coaxial

cable, the internal and external radia are edoallonger to

a, b, bub) tor;=a/sing andr,=b/sind. X cog kn(z—Vt)cosd], (28
Let us now consider the spectral functions

12
Faplp,z;t)= gexp{— (z7vgt)"

el PRALIE

where, let us recall,\/=c2/vg=c/cose, and we used the

Wy=exfd —q*(0—w,)?], (24 identity
with the same weight parametgr so thatAw too is the % 9o 1
same[according to our definitions\ = 1/q]; and with f_mdf exd —q°f°] cod f(vy "z—1)]
k.c _
= 29 _EEX%_ (v lz—tq
- q 49 |

guantity sind having a fixed but otherwise arbitrary value. . , . ) .
We shall construct FTESS(p,z;t), of the typé It is rather interesting to notice that the FTE39) is

\ related to the X-shaped waves, since the integration in Eq.

* (26) does eventually yield the FTES in the form
Fanlp,zi)=2, |  dogW,, (26)
n=1J - \/; (Z_ vgt)2
with arbitraryN. Notice that we are not using a single Gauss- q 49%vg

ian weight, but a different Gaussian function for eash _ _ ' _ '
value, such weights being centered around the correspondirfgnction 7(p,z) being one of our previous solutions in Eq.
Wy (12) or Eg.(16) above, at our free choice.

Due to the mentioned localization of th, around the ~ Let us go back to the important relati¢#7'), and to the
wq, Va'ues] we Car(for each Va'ue ofn in the above Sum dISCUSSIOI’] about It Started at the beg|nn|ng of th|S section.

expand the functiopB(w) in the neighborhood of the corre- Let us repeat that, if we choose thg values as in Fig. 9, all
spondingw,, value: our small-bandwidth packets, centered at th¢s, get the

same phase velocity>c and therefore the same group ve-
B Ic>2city 2vg<C [since for metallic waveguides the quantities
B(w)=PBon+ o (w—wp)+ -, (27 ka=wi/c?— B2 are constant for. each mode, ang
=dwl/dp, so that it isVvy= c?]. This means that the enve-
lope of solution(28) and(29) moves with slower-than-light
speed:; the envelope lendthl depending on the choseévw,

2When integrating over from — to += there are also the and being therefore proportional ¢ . _
nonphysical (fraveling backwards in spaceand the evanescent However, inside such an envelope, one gets a train of
waves. But their actual contribution is totally negligible, since the (X-shaped pulses—having nothing to do with the ordinary
weight functionsW,, are strongly localized in the vicinity of the,
values(which are all positive; see, e.g., Fig). In any case, one
could integrate from O toe at the price of increasing a little the  3One may call “envelope length” the distance between the two
mathematical complexity: we are preferring the present formalisnpoints in which the envelope height is, for instance, 10% of its
for the sake of simplicity. maximum height.

@n
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FIG. 10. Time evolution of dinite total energy solution. Choosirg=0.606 s,c=1, N=40,a=1 cm,b=3 cm, andd=45", there is
only one X-shape pulse inside the subluminal envelope: see the text. The pulse and envelope velocities are giwdricbgd anduv,g
=1/: The superluminal speed=1/v4 of such a pulse can be regarded, of course, as the actual velocity of the wave. Raguis (c),
(d), (e), and(f) show a complete cycle of the pulse; they correspond to the time ingtaitst=0.5 s,t=1 s,t=3 s,t=3.5 s, andt
=4 s, respectively.

carrier wavé’, as we already mentioned—traveling with the shaped wavepeak: the superluminal spe¥d= czlvg of such

superluminal speed. An interesting point is that we can a pulse can then be regarded as the actual velocity of the

choose the envelope length so that it containy one(X-  wave. In order to have just one peak inside the envelope, the
envelope length is to be chosen smaller than the distance

between two successive peaks of tir&inite total energy
“Actually, they can be regarded as a sum of carrier waves. train (12), or (16).

046617-8
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It should be noted, at last, that the amplitude of such a On applying the transformations
single X-shaped pulséwhich remains confined inside the

envelope first increases, and afterwards decreases, while . L ., cosf
traveling; till when it practically disappears. While the con- ~ X—X'sin6, y—y’'sing, and t—t'-z c
sidered pulse tends to vanish on the righg., under the right (A2)

tail of the envelopg a second pulse starts to be created on

t.h‘? left; and so on. Frgm qug) itis Cle.ar.’ In fact, thatour g angled being fixed (6< #</2), the three-dimensional
finite-energy solution is nothing but gmfinite-energy so- function

lution of the type in Eq(12), or in Eq.(16), multiplied by a

Gaussian function. In Fig. 10 all such a behavior is clearly P ety ' P st o

depicted. Yap (XY, 2" t")=thop (X' SiNG,y’ sind;t’ —z COS&/((,;A)S)
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2 2 2 1 2 1oxgl ol et
ax,+ay,+az,—?at, Yap(X'y',2";t")=0. (A4)

1
2 2 2 2 .
(ax,+(9y,+&z,——gc at,) Pap(X'y',2";t")

APPENDIX
theLgaL:jsepsersoisgﬁiear\]rli:demonstrate, the Lu's theorem, for =(sir?0&§+sin20a§+cifeaf— éatz) Yon(X.y:t)
. Theqrem Be #yp(xy;t) a solutiqn of the two- 1
dimensional homogeneous wave equation =sin2¢9( P2+ &5_ ?atz Wop(X,y:1) =0,
(a2+(92— iaz) Pop(X,y;t)=0. (A1)
x 10y g2t 2D so that the theorem gets demonstrated.
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