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Superluminal X-shaped beams propagating without distortion along a coaxial guide
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In a previous paper we showed that localized superluminal solutions to the Maxwell equations exist, which
propagate down~nonevanescence! regions of a metallic cylindrical waveguide. In this paper we construct
analogous nondispersive waves propagating along coaxial cables. Such new solutions, in general, consist in
trains of~undistorted! superluminal ‘‘X-shaped’’ pulses. Particular attention is paid to the construction offinite
total energy solutions. Any results of this kind may find application in the other fields in which an essential role
is played by a wave equation~like acoustics, geophysics, etc.!.
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I. INTRODUCTION

In a previous paper@1# we constructed localized superlu
minal solutions to the Maxwell equations propagating alo
~nonevanescent regions of! a metallic cylindrical waveguide
In the present paper we are going to show that analog
solutions exist even for metalliccoaxialcables. Their interes
is due to the fact that they propagate without distortion w
superluminal group velocity.

Let us recall that already in 1915 Bateman@2# showed
Maxwell equations to admit~besides of the ordinary solu
tions, endowed with speedc in vacuum! of wavelettype so-
lutions, endowed in vacuum with group velocities 0<v
<c. But Bateman’s work went practically unnoticed, wi
the exception of a few authors as Barutet al. @3#. ~Inciden-
tally, Barutet al.even constructed a wavelettype solution@4#
traveling with superluminal group velocityV.c.)

In recent times, however, many authors started to disc
the circumstance that all wave equations admit of soluti
with 0<v<`: see, e.g., Ref.@5#. Most of those authors
confined themselves to investigate~subluminal or superlumi-
nal! nondispersive solutions propagating in the open sp
only, namely, those solutions that had been called ‘‘und
torted progressive waves’’ by Courant and Hilbert@6#.

Among localized solutions, the most interesting appea
to be the ‘‘X-shaped waves,’’ which, predicted long ago to
exist within special relativity in its extended version@7,8#,
had been mathematically constructed by Lu and Green
@9# for acoustic waves, and by Ziolkowskiet al. @10# and by
Recamiet al. @11# for electromagnetic waves.

Let us stress that such ‘‘X-shaped’’ localized solutions
superluminal ~i.e., travel with a speed larger thanc in
vacuum! in the electromagnetic case; and are ‘‘superson
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~i.e., travel with a speed larger than the sound speed in
medium! in the acoustic case. The first authors to produ
experimentallyX-shaped waves were Lu and Greenleaf@13#
for acoustics, Saari and Reivelt@14# for optics, and Mugnai
et al. @15# for microwaves. Let us also emphasize, incide
tally, that all such solutions can have an interesting role e
in seismology, and probably in the gravitational wave sec

Notwithstanding all that work@16#, it is not well under-
stood yet what solutions—let us now confine ourselves,
simplicity, to Maxwell equations and to electromagne
waves only—have to enter into the play in realistic expe
ments using waveguides, optical fibers, etc.

II. THE CASE OF A CYLINDRICAL WAVEGUIDE

As we already mentioned, in Ref.@1# we constructed, for
the TM ~transverse magnetic! case, localized solutions to th
Maxwell equations which propagate~undistorted! with Su-
perluminal speed along a cylindrical waveguide. Let us ta
advantage of the present opportunity for calling further
tention to two points, which received just a mention in R
@1#, with regard to Eq.~9! and Fig. 2 therein. Namely, let u
here stress that:~i! Those solutions consist in atrain of
pulses like the one depicted in Fig. 2 of Ref.@1#; and that~ii !
each of such pulses is X-shaped.

A more complete representation of the TM@and trans-
verse electric, TE# nondispersive waves, traveling down
cylindrical waveguide, will be forwarded elsewhere.

III. THE CASE OF A COAXIAL CABLE

Let us now examine the case of a coaxial cable~a metallic
coaxial waveguide, to fix our ideas!, that is, of the region
delimited by two cylinders with radiusr5r 1 and r5r 2,
respectively, and axially symmetric with respect to thez axis:
see Fig. 1. We shall consider in this article both the TM ca
©2002 The American Physical Society17-1
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characterized by the Dirichlet boundary conditions@17# ~for
any time instantt)

Ez~r5r 1 ;t !50, Ez~r5r 2 ;t !50, ~1!

and the TE~transverse electric! case, characterized by th
Neumann boundary conditions@17# ~for any t),

]

]r
Hz~r5r 1 ;t !50,

]

]r
Hz~r5r 2 ;t !50. ~2!

To such aims, we shall first generalize a theorem due
Lu et al. @18# ~stated and demonstrated below, in the Appe
dix!, which showed how to start from a solution holdingin
the plane(x,y) for constructing a three-dimensional solutio
rigidly moving along thez axis with superluminal speedV.
The theorem of Luet al. was valid for the vacuum. In Ref
@1#, we set forth its generalization for a cylindrical wav
guide, while here we are going to extend it, as we said abo
for a coaxial cable. Let us first recall what the theorem of
et al. is about. If we assume thatc(r;t), with r[(x,y), is a
solution of the two-dimensional homogeneous wave eq
tion

S ]x
21]y

22
1

c2 ] t
2Dc~r;t !50, ~3!

then, by applying the transformations

r→r sinu, and t→t2zS cosu

c D , ~4!

the angleu being fixed, with 0,u,p/2, one gets@18# that
c(r sinu;t2zcosu/c) is now a solution of the three-
dimensionalhomogeneous wave equation

S“22
1

c2 ] t
2D cS r sinu;t2z

cosu

c D50, ~5!

where now“2[]x
21]y

21]z
2 , r[(x,y).

The mentioned theorem holds for the free case, so tha
general, it does not hold when introducing boundary con
tions. We shall see, however, that it can be extended eve
the case of a two-dimensional solutionc valid on an annular
domain, a<r<b, r[uru, with either the ~Dirichlet!
boundary conditions

c~r5a;t !5c~r5b;t !50, ~18!

FIG. 1. Sketch of the coaxial waveguide.
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or the ~Neumann! boundary conditions

]

]r
c~r5a;t !5

]

]r
c~r5b;t !50. ~28!

Let us notice right now that transformations~4!, with con-
dition (18) or (28), lead to a~three-dimensional! solution
rigidly traveling with superluminal speedV5c/cosu inside a
coaxial cable with internal and external radius equal~no
longer toa, b, but! to r 15a/sinu.a and r 25b/sinu.b,
respectively. The same procedure can be applied also in o
cases, provided that the boundary conditions depend onx,y
only, as in the case, e.g., of a cable with many cylindri
~empty! tunnels inside it.

IV. THE TRANSVERSE MAGNETIC „TM … CASE

Let us go back to the two-dimensional equation~3! with
the boundary conditions (18). Let us choose, for instance
the simple initial conditions c(r;t50)[f(r) and ]c/]t
[j(r) at t50, where

f~r!5d~r2r0!, j~r!u t5050, ~6!

with

a,r0,b. ~68!

Following a method similar to that in Ref.@1#, and using
the boundary conditions (18), in cylindrical coordinates and
for axial symmetry one gets solutions to Eq.~3! of the type
c5(Rn(r)Tn(t) in the following form:

2c~r;t !5 (
n51

`

Rn~r!@An cosvnt2Bn sinvnt#, ~7!

where the functionsR(r) are

Rn~r![N0~kna! J0~knr!2J0~kna! N0~knr!, ~8!

quantitiesN0 and J0 being the zeroth-order Neumann an
Bessel functions, respectively; and where the character
angular frequencies@19# can be evaluated numerically, the
being solutions to the equation@vn5ckn#,

J0~kna!

N0~kna!
5

J0~knb!

N0~knb!
. ~9!

The initial conditions ~6! imply that (AnRn(r)5d(r
2r0), and(BnRn(r)50, so that all the coefficientsBn van-
ish, and eventually one obtains the two-dimensional solut

C2D~r;t !5 (
n51

`

AnRn~r! cosvnt, ~10!

with

2An5$2a2@N0~kna!J1~kna!2J0~kna!N1~kna!#2

1b2@N0~kna!J1~knb!2J0~kna!N1~knb!#2%21

3Rn~r0!. ~11!
7-2
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One can notice that the present procedure is mathem
cally analogous to the analysis of the free vibrations o
ring-shaped elastic membrane@19#.

For any practical purpose, one has of course to tak
finite numberN of terms in expansion~10!. In Fig. 2 we
show, e.g., the two-dimensional functionsuC2D(r;t)u2 of Eq.
~10! for fixed time (t50) and forN510 ~dotted line! or N
540 ~solid line!. Notice that, when the valueN is finite, the
first one of the conditions~6! is no longer ad function, but
represents a physical wave, which nevertheless is still cle
bumped~Fig. 2!. It is rather interesting that, for each value
N, one meets a different~physical! situation; at the exten
that we obtain infinite manydifferent families of three-
dimensional solutions, by varying the truncating valueN in
Eq. ~12! below.

Actually, by the transformations~4! we arrive from Eq.
~10! at the three-dimensional superluminal nondispersive
lution C3D , propagating without distortion along a metall
coaxial waveguide, i.e., down a coaxial cable@V.c#,

C3D~r;z2Vt!5 (
n51

`

AnRn~r sinu! cos@kn~z2Vt!cosu#,

~12!

which is a sum over different propagating modes. The f
that V5c/cosu.c means ~once more! that the group
velocity1 of our pulses is superluminal. For simplicity, in ou
figures we shall putz2Vt[h.

Let us notice that transformations~4!, which change—as
we already know—a into r 15a/sinu and b into r 2
5b/sinu, are such that the maximum ofC3D is got for the

1Let us recall that the group-velocity is well defined only when t
pulse has a clear bump in space; but it can be calculated by
approximate relationvg.dv/db, quantityb being the wave num-
ber,only when some extra conditions are satisfied~namely, whenv
as a function ofb is also clearly bumped!. In the present case th
group velocity is very well defined, but cannot be evaluated thro
that simple relation, sincev is a discrete function ofb; cf. Eq. ~9!
and Sec. VI, Eq.~22!, below.

FIG. 2. Square magnitudeuC2D(r;t50)u2 of the two-
dimensional solutions in Eq.~10! for fixed time (t50) and forN
510 ~dotted line! or N540 ~solid line!. It refers to the TM case
~Dirichlet boundary conditions! with a51 cm, b53 cm, andr0

52 cm: see the text.
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value r0 /sinu of r. However, solution~12! does automati-
cally satisfy on the cylinders with radiusr 1 and r 2 the con-
ditions @C3D[Ez#,

C3D~r5a/sinu,z;t !5C3D~r5b/sinu,z;t !50.

Till now, C3D has represented the electric field comp
nentEz . Let us add that in the TM case@20#

E'5 i
cV

V22c2 (
n51

`
1

kn
“'C3D , ~12a!

where

cV

V22c2 [
cosu

sin2u
, kn5vn /c,

and

H'5«0

V

c
ẑ3E' . ~12b!

As we mentioned above, for any truncating valueN in
expansion~10!, we get adifferent physical situation: In a
sense, we excite in adifferentway the two-dimensional an
nular membrane, obtaining~via the theorem of Lu! different
three-dimensional solutions, which correspond@1# to nothing
but summation~12! truncated at the valueN.

In Figs. 3~a!, 3~b!, we show a single~X-shaped! three-
dimensional pulseC3D with u584o, andN510 or N540,
respectively.

In Fig. 4, by contrast, we depict a couple of elements
the train of X-shaped pulses represented by Eq.~12!, for u
545o andN540.

In Fig. 5 the orthogonal projection is moreover shown
a single pulse~of the solution in Fig. 4! onto the (r,z) plane
for t50, with u545o and N540. Quantitiesr and h are
always in centimeters.

V. THE TRANSVERSE ELECTRIC „TE… CASE

In the TE case, one has to consider the two-dimensio
equation~3! with the boundary conditions (28), while the
initial conditions~6! can remain the same.

As in Sec. IV, one gets—still for axial symmetry in cylin
drical coordinates—the following solution to Eq.~3!:

2c~r;t !5 (
n51

`

Rn~r!@An cosvnt2Bn sinvnt#, ~13!

where now the functionsRn(r) are

Rn~r![N1~kna!J0~knr!2J1~kna!N0~knr!, ~138!

defined in terms of different values ofkn . In fact, the char-
acteristic~angular! frequencies are now to be obtained by t
new relation

J1~kna!

N1~kna!
5

J1~knb!

N1~knb!
. ~14!
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h
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Again, the initial conditions~6! entail that (AnRn(r)
5d(r2r0), and (BnRn(r)50, so that all the coefficients
Bn vanish, and one gets the two-dimensional solution

C2D~r;t !5 (
n51

`

AnRn~r! cosvnt, ~15!

where the coefficientsAn are given by

2An5$2a2@N1~kna!J0~kna!2J1~kna!N0~kna!#2

1b2@N1~kna!J0~knb!2J1~kna!N0~knb!#2%21

3Rn~r0!. ~158!

In this case one obtains, by transformations~4!, the super-
luminal nondispersive three-dimensional solution

C3D~r;z2Vt!5 (
n51

`

AnRn~r sinu! cos@kn~z2Vt!cosu#,

~16!

FIG. 3. In Figs. ~a! and ~b! we show the square magnitud
uC3D(r,h)u2 of a single~X-shaped! three-dimensional pulse of th
beam in Eq.~12!, with u584o, r 15a/sinu, r25b/sinu ~it having
been chosena51 cm andb53 cm), for N510 andN540, re-
spectively. They refer to the TM case. Notice thath[z2Vt, and
that the considered beam is a train of X-shaped pulses. In all
figures of this paper, quantitiesr andh are in centimeters.
04661
propagating along the metallic coaxial waveguide with gro
velocity V5c/cosu.c. The present solution~16! satisfies
the boundary conditions

]

]r
C3D~r,z;t !U

r5a/sin u

5
]

]r
C3D~r,z;t !U

r5b/sin u

50,

where nowC3D[Hz . The transverse components, in the T
case, are given@20# by

H'5
2cV

V22c2 (
n51

`
1

kn
sin@kn~z2Vt!cosu#“'Rn~r sinu!,

~17a!

ande

FIG. 4. In this figure we depict, by contrast, acoupleof ele-
ments of the train of X-shaped pulses represented in the TM cas
Eq. ~12!, for N540. This time the angleu545o was chosen, keep
ing the samea andb values as before.

FIG. 5. The orthogonal projection is shown of a single pulse~of
the solution in Fig. 4, referring to the TM case! onto the (r,z) plane
for t50, with u545o andN540.
7-4
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E'52m0

V

c
ẑ3H' . ~17b!

In Fig. 6 we plot our functionC2D with N510 ~dotted
line! or N540 ~solid line!. In Fig. 7 there are depicted, b
contrast, two elements of the train of X-shaped pulses re
sented by Eq.~16!, with u560o, for N540 only. In Fig. 8, at
last, we show the orthogonal projection of the solution
Fig. 7 onto the plane (r,z) for t50, with u560o and N
540. Quantitiesr andh are in cm.

VI. REDERIVATION OF OUR RESULTS FROM THE
STANDARD THEORY OF WAVEGUIDE PROPAGATION

Lu’s theorem is certainly a very useful tool to build u
localized solutions to Maxwell equations: nevertheless,
to the novelty of our previous results, it may be worthwh
to outline an alternative derivation@1# of them which can
sound more familiar. To such an aim, we shall follow t
procedure introduced in Ref.@1#.

For the sake of simplicity, let us limit ourselves to th

FIG. 6. In analogy with Fig. 2, the square magnitu
uC2D(r;t50)u2 is shown of the two-dimensional solutions in E
~15! for fixed time (t50), and for a51 cm, b53 cm, r0

52 cm; this time it refers, however, to the TE case~Neumann
boundary conditions!; see the text. Again, the dotted line corr
sponds toN510, and the solid line toN540.

FIG. 7. In this figure, which refers to the TE case, two eleme
are depicted of the train of X-shaped pulses represented by Eq.~16!,
with u560o andN540, while keeping the samea andb values as
before.
04661
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domain of TM modes. When a solution in terms of the lo
gitudinal electric componentEz is sought, one has to dea
with the boundary conditionEz50; we shall look, moreover
for axially symmetric solutions~i.e., independent of the azi
muth variablew): Such choices could be easily generalize
just at the cost of increasing the mathematical complex
QuantityEz is then completely equivalent to the scalar va
ableC[C3D used in the previous analysis.

Let us look for solutions of the form@1#

Ez~r,z;t !5KR~r!expF i S vz cosu

c
2vt D G , ~18!

whereR(r) is assumed to be a function of the radial coo
dinater only, andK is a normalization constant. Here w
call c the velocity of light in the medium filling the coaxia
waveguide, supposing it nondispersive. The~angular! fre-
quencyv is for the moment arbitrary.

By inserting expression~18! into the Maxwell equation
for Ez , one obtains@1#

r2
d2R~r!

dr2 1r
dR~r!

dr
1r2V2R~r!50, V[

v sinu

c
,

whose only solution, which is finite on the waveguide ax
is R(r)5N0(va/c)J0(vr sinu/c)2J0(va/c)N0(vr sinu/c),
which is analogous to Eq.~8!.

By imposing the boundary conditionsR(r)50 for r
5r 1 and r5r 2 , one gets the acceptable frequencies fro
the characteristic equation,

J0~vna/c!

N0~vna/c!
5

J0~vnb/c!

N0~vnb/c!
, ~19!

so that one has a different functionRn(r) for each value of
vn . Therefore, assuming@1# an arbitrary parameteru, we
find that, for every mode supported by the waveguide a

s

FIG. 8. The orthogonal projection is shown of the solution
Fig. 7, for the TE case, onto the plane (r,z) for t50, with u
560o andN540.
7-5
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labeled by the indexn, there is just one frequency at whic
the assumed dependence~18! on z and t is physically realiz-
able. Let us show such a solution to be the standard
known from classical electrodynamics. In fact, by inserti
@1# the allowed frequenciesvn into the complete expressio
of the mode, we have

Ez
n~r,z;t !5KRn~r! expF i S vnz cosu

c
2vnt D G . ~20!

But the generic solution for~axially symmetric! TM0n
modes @21# in a coaxial metallic waveguide is@Vn
[vn sinu/c#,

Ez
TM0n5KRn~r! exp@ i ~b~vn!z2vnt !#, ~21!

the wave numberb being a discrete function ofv, with the
‘‘dispersion relations’’

b2~vn!5
vn

2

c2
2Vn

2 .

By identifying b(vn)[vn cosu/c, as suggested by Eq.~20!,
and remembering the expression forvn given by Eq.~19!,
the ordinary dispersion relation is got@1#. We have therefore
verified that every term in the expansion~12! is a solution to
Maxwell equations not different from the usual one.

The uncommon feature of our solution~12! is that, given
a particular value ofu, the phase velocity ofall its terms is
always the same, it being independent of the mode inden,

Vph5Fb~vn!

vn
G21

5
c

cosu
.

In such a case it is well known that the group velocity of t
pulseequalsthe phase velocity@22#: and in our case is the
velocity tout courtof the localized pulse.

With reference to Fig. 9, we can easily see@1# that all the
allowed values ofvn can be calculated by determining th
intersections of the various branches of the dispersion r
tion with a straight line, whose slope depends onu only. By
using suitable combinations of terms, corresponding to
ferent indicesn, as in our Eq.~12!, it is possible to describe
a disturbance having a time-varying profile@1#, as already
shown in Figs. 3–4 above. Each pulse thus displaces i
rigidly, with a velocityv[vg equal toVph.

It should be repeated that the velocityv ~or group-
velocity vg[v) of the pulses corresponding to Eq.~9! is not
to be evaluated by the ordinary formulavg.dv/db ~valid
for quasimonochromatic signals!. This is at variance with the
common situation in optical and microwave communic
tions, when the signal is usually an ‘‘envelope’’ superim
posed to a carrier wave whose frequency is generally m
higher than the signal bandwidth. Inthat case the standar
formula for vg yields the correct velocity to deal with~e.g.,
when propagation delays are studied!. Our case, on the con
trary, is much more reminiscent of a baseband modula
signal, as those studied in ultrasonics: the very concept
carrier becomes meaningless here, as the discrete ‘
monic’’ components have widely different frequencies@1#.
04661
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Let us finally remark@1# that similar considerations coul
be extended to all the situations where a waveguide supp
several modes. Tests at microwave frequencies should
rather easy to perform; by contrast, experiments in the o
cal domain would face the problem of the limited extensi
of the spectral windows corresponding to not too large
tenuation, even if some work@23# is in progress in many
directions.

Moreover, results of the kind presented in this paper,
well as in Refs.@1,11,12#, may find application in the othe
fields in which an essential role is played by a wave equa
~like acoustics, seismology, geophysics, and relativis
quantum mechanics, possibly!.

VII. HOW TO GET FINITE TOTAL ENERGY SOLUTIONS

We shall go on following the standard formalism of Se
VI; what we are going to do holds, however, for both the T
and the TE case. Let us anticipate that, in order to get fi
total energy solutions~FTES!, we shall have to replace eac
characteristic frequencyvn @cf. Eq. ~9!, or Eq.~14!, or rather
Fig. 9# by a small frequency bandDv centered atvn , al-
ways choosing the sameDv independently ofn. In fact,
since all the modes entering the Fourier-type expansion~12!,
or ~16!, possess the same phase velocityVph[V5c/cosu,
each small bandwidth packet associated withvn will possess
the same group velocityvg5c2/Vph, so that we shall have a
a result a wave whoseenvelopetravels with thesubluminal
group velocityvg . However, inside the subluminal envelope
one or morepulseswill be traveling with the dual~superlu-
minal! speed V5c2/vg . Such well-localized peaks hav
nothing to do with the ordinary~sinusoidal! carrier wave,

FIG. 9. Dispersion curves for the symmetrical TM0n modes in a
perfect coaxial waveguide, and location of the frequencies wh
corresponding modes possess the same phase velocity.@Actually,
the phase velocityc/cosu of all the terms in expansion~12! is
always the same, being independent of the mode indexn: In such a
case, it is known that the group velocity of the pulse~namely, the
velocity tout court of the localized pulse! becomes equal to the
phase velocity.#
7-6
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SUPERLUMINAL X-SHAPED BEAMS PROPAGATING . . . PHYSICAL REVIEW E66, 046617 ~2002!
and will be regarded as constitutingthe relevantwave. Be-
fore going on, let us mention that previous work related
FTESs can be found—as far as we know—only in Re
@24,12#.

Formally, to get FTESs, let us consider the ordina
~three-dimensional! solutions for a coaxial cable:

cn~r,z;t !5KnRn~r! cos@b~v!z2vt#, ~22!

where coefficientsKn coincidewith theAn given by Eq.~11!
or Eq. ~158! in the TM or TE cases, respectively; and fun
tionsRn are again given by Eq.~8! or Eq.~138!, respectively;
since the valueskn ,

kn[
v2

c2
2b2, ~23!

are equal to those found via the~two dimensional! Eq. ~9! in
the TM and via Eq.~14! in the TE case, simplymultipliedby
sinu @because of the fact that, when going on from the tw
dimensional membrane to the three-dimensional coa
cable, the internal and external radia are equal~no longer to
a, b, but! to r 15a/sinu and r 25b/sinu].

Let us now consider the spectral functions

Wn[exp@2q2~v2vn!2#, ~24!

with the same weight parameterq, so thatDv too is the
same@according to our definitions,Dv51/q]; and with

vn[
knc

sinu
, ~25!

quantity sinu having a fixed but otherwise arbitrary valu
We shall construct FTESs,F(r,z;t), of the type2

F3D~r,z;t !5 (
n51

N E
2`

`

dvcnWn , ~26!

with arbitraryN. Notice that we are not using a single Gaus
ian weight, but a different Gaussian function for eachvn
value, such weights being centered around the correspon
vn .

Due to the mentioned localization of theWn around the
vn values, we can~for each value ofn in the above sum!
expand the functionb(v) in the neighborhood of the corre
spondingvn value:

b~v!.b0n1
]b

]vU
vn

~v2vn!1•••, ~27!

2When integrating overv from 2` to 1` there are also the
nonphysical ~traveling backwards in space! and the evanescen
waves. But their actual contribution is totally negligible, since t
weight functionsWn are strongly localized in the vicinity of thevn

values~which are all positive; see, e.g., Fig. 9!. In any case, one
could integrate from 0 tò at the price of increasing a little th
mathematical complexity: we are preferring the present formal
for the sake of simplicity.
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where b0n5vn cosu, and the further terms are neglecte
since Dv is assumed to be small. Notice that, because
relations ~25! and ~23!, in Eq. ~27! the group velocities,
given by

1

vgn
5

]b

]vU
vn

,

are actually independent ofn, all of them possessing there
fore the same value:

vgn[vg5c cosu. ~278!

By using relation~27! and the transformation of variable

f n[v2vn ,

the integration in Eq.~26! does eventually yield

F3D~r,z;t !5
Ap

q
expF2

~z2vgt !2

4q2vg
2 G (

n51

`

AnRn~r!

3cos@kn~z2Vt!cosu#, ~28!

where, let us recall,V5c2/vg5c/cosu, and we used the
identity

E
2`

`

df exp@2q2f 2# cos@ f ~vg
21z2t !#

5
Ap

q
expF2

~vg
21z2t !2

4q2 G .
It is rather interesting to notice that the FTES~28! is

related to the X-shaped waves, since the integration in
~26! does eventually yield the FTES in the form

F3D~r,z;t !5
Ap

q
expF2

~z2vgt !2

4q2vg
2 GT ~r,z!, ~29!

function T (r,z) being one of our previous solutions in Eq
~12! or Eq. ~16! above, at our free choice.

Let us go back to the important relation~278!, and to the
discussion about it started at the beginning of this sect
Let us repeat that, if we choose thevn values as in Fig. 9, all
our small-bandwidth packets, centered at thevn’s, get the
same phase velocityV.c and therefore the same group v
locity vg,c @since for metallic waveguides the quantitie
kn

25vn
2/c22b2 are constant for each mode, andvg

[]v/]b, so that it isVvg5c2]. This means that the enve
lope of solution~28! and ~29! moves with slower-than-light
speed; the envelope length3 D l depending on the chosenDv,
and being therefore proportional toqvg .

However, inside such an envelope, one gets a train
~X-shaped! pulses—having nothing to do with the ordina

3One may call ‘‘envelope length’’ the distance between the t
points in which the envelope height is, for instance, 10% of
maximum height.
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FIG. 10. Time evolution of afinite total energy solution. Choosingq50.606 s,c51, N540, a51 cm, b53 cm, andu545o, there is
only one X-shape pulse inside the subluminal envelope: see the text. The pulse and envelope velocities are given byV51/cosu and vg

51/V: The superluminal speedV51/vg of such a pulse can be regarded, of course, as the actual velocity of the wave. Figures~a!, ~b!, ~c!,
~d!, ~e!, and ~f! show a complete cycle of the pulse; they correspond to the time instantst50, t50.5 s, t51 s, t53 s, t53.5 s, andt
54 s, respectively.
e
n the

the
nce
carrier wave,4 as we already mentioned—traveling with th
superluminal speedV. An interesting point is that we ca
choose the envelope length so that it containsonly one~X-

4Actually, they can be regarded as a sum of carrier waves.
04661
shaped wave! peak: the superluminal speedV5c2/vg of such
a pulse can then be regarded as the actual velocity of
wave. In order to have just one peak inside the envelope,
envelope length is to be chosen smaller than the dista
between two successive peaks of the~infinite total energy!
train ~12!, or ~16!.
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It should be noted, at last, that the amplitude of suc
single X-shaped pulse~which remains confined inside th
envelope! first increases, and afterwards decreases, w
traveling; till when it practically disappears. While the co
sidered pulse tends to vanish on the right~i.e., under the right
tail of the envelope!, a second pulse starts to be created
the left; and so on. From Eq.~29! it is clear, in fact, that our
finite-energy solution is nothing but an~infinite-energy! so-
lution of the type in Eq.~12!, or in Eq.~16!, multiplied by a
Gaussian function. In Fig. 10 all such a behavior is clea
depicted.
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APPENDIX

Let us here state, and demonstrate, the Lu’s theorem
the reader’s convenience:

Theorem. Be c2D(x,y;t) a solution of the two-
dimensional homogeneous wave equation

S ]x
21]y

22
1

c2 ] t
2Dc2D~x,y;t !50. ~A1!
v.

,

A
.
.
.

s

.

04661
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.

or

On applying the transformations

x→x8 sinu, y→y8 sinu, and t→t82z8
cosu

c
,

~A2!

the angleu being fixed (0,u,p/2), the three-dimensiona
function

c3D ~x8,y8,z8;t8!5c2D ~x8 sinu,y8 sinu;t82z8 cosu/c!
~A3!

results to be a solution of the three-dimensional wave eq
tion

S ]x8
2

1]y8
2

1]z8
2

2
1

c2 ] t8
2 Dc3D~x8,y8,z8;t8!50. ~A4!

Demonstration. By use of Eqs.~A2!, ~A3! and of assump-
tion ~A1!, one obtains, by direct calculations, that

S ]x8
2

1]y8
2

1]z8
2

2
1

c2 ] t8
2 D c3D~x8,y8,z8;t8!

5S sin2u ]x
21sin2u ]y

21
cos2u

c2 ] t
22

1

c2 ] t
2Dc2D~x,y;t !

5sin2uS ]x
21]y

22
1

c2 ] t
2Dc2D~x,y;t !50,

so that the theorem gets demonstrated.
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